Constructions of generalized Sidon sets
نویسندگان
چکیده
We give explicit constructions of sets S with the property that for each integer k, there are at most g solutions to k = s1 + s2, si ∈ S; such sets are called Sidon sets if g = 2 and generalized Sidon sets (or B2[ ⌈ g/2 ⌉ ] sets) if g ≥ 3. We extend to generalized Sidon sets the Sidon-set constructions of Singer, Bose, and Ruzsa. We also further optimize Koulantzakis’ idea of interleaving several copies of a Sidon set, extending the improvements of Cilleruelo & Ruzsa & Trujillo, Jia, and Habsieger & Plagne. The resulting constructions yield the largest known generalized Sidon sets in virtually all cases.
منابع مشابه
Generalized Sidon sets
We give asymptotic sharp estimates for the cardinality of a set of residue classes with the property that the representation function is bounded by a prescribed number. We then use this to obtain an analogous result for sets of integers, answering an old question of Simon Sidon. © 2010 Elsevier Inc. All rights reserved. MSC: 11B
متن کاملOn Uniformly Approximable Sidon Sets
Let G be a compact abelian group and let T be the character group of G. Suppose £ is a subset of T. A trigonometric polynomial f on G is said to be an ^-polynomial if its Fourier transform / vanishes off E. The set E is said to be a Sidon set if there is a positive number B such that 2^xeb |/(X)| á-B||/||u for all E-polynomials /; here, ||/||„ = sup{ |/(x)| : xEG}. In this note we shall discuss...
متن کاملConstruction of Sidon spaces with applications to coding
A subspace of a finite extension field is called a Sidon space if the product of any two of its elements is unique up to a scalarmultiplier from the base field. Sidon spaces were recently introduced by Bachoc et al. as a means to characterize multiplicativeproperties of subspaces, and yet no explicit constructions were given. In this paper, several constructions of Sidon spaces arep...
متن کاملPhase transitions in number theory: from the birthday problem to Sidon sets.
In this work, we show how number theoretical problems can be fruitfully approached with the tools of statistical physics. We focus on g-Sidon sets, which describe sequences of integers whose pairwise sums are different, and propose a random decision problem which addresses the probability of a random set of k integers to be g-Sidon. First, we provide numerical evidence showing that there is a c...
متن کاملLacunary Fourier Series for Compact Quantum Groups
This paper is devoted to the study of Sidon sets, Λ(p)-sets and some related notions for compact quantum groups. We establish several different characterizations of Sidon sets, and in particular prove that any Sidon set in a discrete group is a strong Sidon set in the sense of Picardello. We give several relations between Sidon sets, Λ(p)-sets and lacunarities for LFourier multipliers, generali...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- J. Comb. Theory, Ser. A
دوره 113 شماره
صفحات -
تاریخ انتشار 2006